Pulmonary Contusion Leandro Fadel, DVM MSc Small Animal Emergency Care ## Introduction - * Pulmonary contusion: - pulmonary interstitial and alveolar hemorrhage and edema - * blunt chest trauma - compression-decompression injury of the thoracic cage # Etiology - * Most common: - * Hit by car and high-rise fall - But also: - * Thoracic bites, animal interaction, human abuse and others # Etiology - * JVECC 2009 - * 235 severe blunt trauma in dogs - * 91,1%: hit by car * Chest: 72.3% (!!!) **Retrospective Study** Journal of Veterinary Emergency and Critical Care 19(6) 2009, pp 588–602 doi: 10.1111/j.1476-4431.2009.00468.x ### Severe blunt trauma in dogs: 235 cases (1997–2003) Stephen A. Simpson, DVM; Rebecca Syring, DVM, DACVECC and Cynthia M. Otto, DVM, PhD, DACVECC **Figure 2:** Percentage of anatomic blunt trauma distributions in all 235 dogs for head/neck trauma (H), chest (C), extremity (E), abdomen (A), and abdomen and chest (AC). Other combinations were <9% and trauma in all regions accounted for 2.6%. Because of polytrauma results do not add to 100%. # Etiology - High-rise fall - Collard et al 2005, Vnuk et al 2004, Papazoglou et al 2001 e Whitney et al 1987 - * n= 500 cats Increased phospholipase A₂ and lyso-phosphatidylcholine levels are associated with surfactant dysfunction in lung contusion injury in mice David Machado-Aranda, MD, Albert MD, Albert MD, Albert MD, Albert MD, PhD, Albert MD, PhD, Albert MD, PhD, Albert MD, PhD, Albert MD, MD ### Surgery Volume 153, Issue 1, January 2013, Pages 25-35 lung tissue bursts or is sheared where a shock wave meets the lung tissue, at interfaces between gas and liquid Compression-decompression Hemorrhage Bronchospasm Mucous production Decreased production of surfactant Alveolar collapse Inflammation + permeability injury Infiltration of neutrophils and monocytes Alveoli are full of protein, RBC and inflammatory cells Normal architecture is lost Decrease in compliance - * Healing: - * 48 72h: healing has started - * 7-10 days: lungs are healed with little scarring # Physical examination findings - * Tachypnea / dyspnea - * Auscultation: - * Normal, increased breath sounds, crackles or wheezes - * Usually asymmetric and might be unilateral - * It can be challenging when concurrent condition is present - * Ultrasound - * POCUS techniques: - * Minimal handling and restraining - * Safer position in unstable patients - * Can be operator- and machine-dependent # Pleural line Pleural line ### "White lung" Less aeration SKIN / SQ H na: Desligado Desligado -12 DB foco ição foco d quads Coalesced zivsı Coalesced B-lines Coalesced 133 B-lines aixa dinàm B-lines Geral TSI Cinza Mapa 6 12 **Mapa Tint** Esq. Invers D/E Desligado 👿 Invers. ci... la :h F 10.0M D 4.6 G 134 FR 28 **DR 133** iClear 3 42 - * B-line vs others - * Z-line and I-line: no clinical importance - * E-line: SQ emphysema - * Radiographs: - * Patchy or diffuse areas - * Alveolar lung infiltrate - * Can be generalized or localized - * May lag 12-24h - * CT scan: - * Gold standard in human medicine - Veterinary medicine - * Lack of availability - Need sedation +/- anesthesia # Blood gas analysis - Most objective method for assessing and monitoring - * Must be arterial - * Hypoxemia +/- CO2 disorder - * PaO2/FiO2 (P/F) - PaO2/FiO2: - Normal: P/F > 300 - Mild: 300 > P/F > 200 - Moderate: 200 > P/F > 100 - Severe: P/F < 100 # Pulse oximetry - * It has some limitations - * Indication - * Initial assessment - * Arterial blood gas analysis is not possible - Less accurate indicator of impaired oxygenation - * Does not provide information about ventilation - * Values - * SpO2 < 95% = hypoxemia - * SpO2 < 90% = severe hypoxemia - * Initial approach - * ABC - * Airways - * Breathing - * Circulation - * Oxygen therapy and ventilation - * Should be administered to all dyspneic patients - * Flow-by - * Nasal oxygen - * Oxygen cages/hoods - * In severe affected patients - * High flow nasal oxygen - * Mechanical ventilation - * Fluid therapy - Many patients will have hypovolemic shock Optimizing perfusion Avoid overzealous administration - Increase in pulmonary capillary hydrostatic pressure Increases fluid extravasation into the alveoli - Individualize the fluid therapy prescription Avoid administering preset volumes and rates - Pulmonary contusion can increase right ventricle afterload - * Fluid therapy - * Evidence in veterinary medicine is scarce - * No evidence of benefits of HTS over isotonic solutions - * Synthetic colloids may worsen pulmonary edema - * Analgesia - * Thoracic injuries are painful - * Consider: - Visceral vs somatic pain - * Bolus vs CRI - * Effect on cardiac and respiratory function - * Systemic vs regional block - * Antimicrobial therapy - * 1% of dogs develop pneumonia after pulmonary contusion - * Avoid to limit bacterial resistance - * Ideally should be based culture and susceptibility tests # Prognosis - * Survival rates depends on: - Severity of pulmonary contusion - * Coexisting thoracic and extrathoracic lesions - * Literature: - * 82% of survival - * If required mechanical ventilation = 30% survival - * If discharged = no residual long-term sequelae ### **CPR** - * Atropine! - * Respiratory issues can lead to increased vagal tone - * If associated with pneumothorax - * Open chest CPR is recommended! ### Fadel - Pulmonary Contusion - This QR Code will take you to a feedback form for this session. - If you have a smartphone, please hold up your phone's camera and let it register the QR code. - A "URL" should appear. Click the URL and fill out the feedback form. ### Thank you for your feedback! "Learning without thinking is useless. Thinking without learning is dangerous." -Confucius