Intervertebral Disk Herniation and Laser Disk Ablation

Danielle Dugat, DVM, MS, DACVS-SA Associate Professor, Small Animal Surgery Cohn Family Chair for Small Animals

Fall Conference 2023

Anatomy of the Intervertebral Disk

- ▶ 26 intervertebral disks in the canine spine
- 2 components
 - Annulus fibrosus
 - Nucleus pulposus
- Cartilagenous vertebral endplates
 - Source of nutrients via diffusion

Disk: Annulus vs. Nucleus

- Annulus fibrosus
 - Parallel arrangement of lamellae
 - ► Twice as thick ventrally than dorsally
- Nucleus pulposus
 - Originates from embryonic notochord
 - Located eccentrically in the disc

Slatter 3rd edition

Function of the Intervertebral Disk

- Shock absorption and distribution
 - Determined by:
 - Proteoglycans in the nucleus
 - ► Elasticity of the annulus
- Flexible enough to allow: bending, shear, compression, tension, torsion
- ► Rigid enough to endure these physiologic forces

Pathophysiology of IVDH

- Molecular components of the disk:
 - Proteins collagenous and noncollagenous
 - Proteoclycans
 - Glycoproteins
- ► IVDH
 - Molecular components change
 - Loss of water
 - Accumulation of mineral
 - Alteration of proteoglycans chondroitin to keratin sulfate
 - Intradiskal pressure increases
 - Extrusion/herniation of the nucleus pulposus
 - Chondroid metaplasia

Slatter 3rd edition

Signalment

- Chondrodystrophic breeds
 - ▶ Dachshund: 45-73% of IVDD cases
 - ► 40-50% less proteoglycans
 - ► 40% less glycoproteins
 - French Bulldog
 - Bassett Hound
 - Poodle
 - Pekingese
 - ▶ Shih Tzu
 - Cocker Spaniel
- Peak age: 3-7 years old

Clinical Presentation

- Compressive myelopathy + contusion injury
- Factors:
 - Duration of compression
 - Velocity of disc herniation
 - Amount of disc herniation

Clinical Presentation

- Paraspinal hyperesthesia
 - Abdominal discomfort?
 - ► Reluctance to ambulate
 - Hunched back/guarded neck
 - Vocalization
- Ataxia/paresis
- Plegia

IVDH Cervical vs. Thoracolumbar

- Cervical
 - ▶ 25-33% of IVDH cases
 - C4-C5 most common
 - Pain more common
 - ▶ Up to 61%
 - ► Larger vertebral canal: spinal cord
- Thoracolumbar
 - ▶ 66-75% of IVDD cases
 - ► T10-11 → caudal
 - ▶ Nerve deficits + pain more common

Neurologic Progression

- Conscious proprioception
- Ambulation
- Motor (voluntary motor function)
- Urination
- Superficial pain
- Deep pain

Paresis

Plegia

Neurologic Progression

- Paresis
 - Weakness
 - Presence of voluntary motor function
 - ► +/- ambulation
- Plegia
 - Absence of voluntary motor function
 - +/- deep pain sensation**

When to offer medical vs. surgical management

Differential Diagnosis

- Neoplasia
- Trauma
 - ► Fracture, luxation, subluxation
- Fibrocartilagenous embolism
- Infection diskospondylitis
- Inflammation
- Orthopedic disease
- Congenital hemivertebrae

Diagnosis

- Radiographs
 - Overall accuracy 35% (Somerville, JAAHA 2001)
 - ► Rule out differentials
 - Mineralized disc in situ
 - ► Each disc = 1.4 X increased risk of IVDH
 - ▶ 5-6 mineralized discs = 50% IVDH risk

Diagnosis

- ► CT
- MRI

Management Medical vs. Surgical

- Paresis
 - Weakness
 - Presence of voluntary motor function
 - ► Ambulation present
 - ► Ambulation absent
- Plegia
 - Absence of voluntary motor function
 - +/- deep pain sensation**

Medical vs. Surgical Management

Neurologic Status	Medical Management	Surgical Management
Pain only	Cervical 70-90% TL 90%	Not indicated
Unresolving Pain	Not indicated	90%
Ambulatory paresis	85-90%	90%
Non-ambulatory paresis	50-60%	80-90%
Plegia, + deep pain	50-60%	80-90%
Plegia, No deep pain <24 hours	Guarded	50-60% (Fair)
Plegia, No deep pain 48 hours	Grave	<5% (Guarded)

Medical Management

- ▶ 4-6 weeks of crate rest
- Pain medications as needed
 - NSAID
 - Carprofen 2.2mg/kg PO BID
 - Meloxicam 0.1mg/kg PO SID
 - ► Gabapentin 10-15 mg/kg PO TID
- Recheck evaluations
 - ▶ 1 or 2 weeks
 - 4 weeks

Medical Management Steroids

- Glucocorticoids were associated with negative outcome and quality of life (Levine, Vet Surg 2007)
 - Spinal cord injury was controlled
- Follow-up study in 161 dogs (Levine, JAVMA 2008)
 - Treatment groups:
 - Dexamethasone within 48 hours
 - ▶ Non-dexamethasone glucocorticoids within 48 hours
 - No glucocorticoids
 - ▶ Steroids did not affect short-term (4-6 week) outcome
 - Dexamethasone higher risk of complications
 - Diarrhea (3.5 X)
 - Urinary tract infection (11.4 X)

Surgical Management

- When medical management fails
 - Continued pain
 - Worsening of neurologic signs
- Non-ambulatory paresis

Recovery and Prognosis

- ► 15-20% risk of recurrence, minimum
 - **2.6-41% (1-4)**
- Recurrence risk greater with >5 mineralized discs in situ
- Recurrence risk greater with inappropriate confinement

Percutaneous Laser Disk Ablation

- Ablation of the nucleus pulposus
 - Alternative to fenestration
- Performed on T10-11 thru L5-6
- Goal
 - Reduce the risk of recurrence
 - Preventative for at-risk breeds
- ► Ho:YAG delivers laser energy + heat to nucleus \rightarrow vaporization (5)
 - Reduced volume of nucleus pulposus
 - Reduced intradiskal pressure (6-10)
 - ► Nucleus fills in with cartilaginous fibrous tissue (11)
- Advantages over fenestration:
 - Lower complication rate/morbidity
 - Shorter time to recovery

PLDA

- Outcome
 - Decreased intradiskal pressure
 - ▶ 76-94% success in humans (12-14)
 - ▶ 56% owners reported improved mobility (15)
- Complications:
 - ▶ Neuritis/pain, anesthesia, recurrence of IVDH episode

Dugat D, Advanced Techniques in Canine and Feline Neurosurgery. 2023

PLDA Evaluating the Procedure (16)

- ▶ 30 dogs
 - Pre-PLDA MRI (baseline)
 - Post-PLDA MRI (immediate effects of PLDA)
 - ▶ 12-week post-PLDA MRI (later effects of PLDA)
- Intervertebral disk morphology
 - Disk morphology did not change
- Diskitis
 - ▶ Mild inflammation (0-15%) at 12 weeks
- Vertebral end plate changes
 - Correlated with subchondral bone marrow changes in adjacent vertebral bodies
 - ▶ T2 TRANS edema (less than 2mm) at 12 wk MRI
 - ▶ Lack of correlation to clinical signs

Dugat D, <u>Advanced Techniques in</u> Canine and Feline Neurosurgery. 2023

PLDA

- Criteria
 - Complete recovery from a previous episode
 - Pain free for 2 weeks prior to procedure
 - ▶ Time 0 exam
 - 2-week exam
 - No pain medications/antiinflammatories for 2 weeks
 - ► Neurologically stable
 - Absence of skin infection/pyoderma
- Cost: \$2,000-2,200

Things to Consider ...

- Acute recurrence is often related to extrusion at same site as previous extrusion (<1 month)
 - ▶ 1-8% risk
- Urinary tract infection risk
 - ▶ 21% 1 week (Stiffler, Vet Surg 2006)
 - 27% 1 week; each day of management = 1.5X risk (Bubenik, Vet Surg 2008)
 - ▶ 38% developed UTI over 3 months (Olby, J Vet Intern Med 2010)
- Rehabilitation
- Electroacupuncture
 - Improved outcomes with medial management
 - ▶ Up to 85% improvement

References

- 1. Brisson BA, Holmberg DL, Parent J, et al. Comparison of the effect of single-site and multiple-site disk fenestration on the rate of recurrence of thoracolumbar intervertebral disk herniation in dogs. J Am Vet Med Assoc 2011;238:1593-1600.
- 2. Brisson BA, Moffatt SL, Swayne SL, et al. Recurrence of thoracolumbar intervertebral disk extrusion in chondrodystrophic dogs after surgical decompression with or without prophylactic fenestration: 265 cases (1995-1999). J Am Vet Med Assoc 2004;224:1808-1814.
- 3. Mayhew PD, McLear RC, Ziemer LS, et al. Risk factors for recurrence of clinical signs associated with thoracolumbar intervertebral disk herniation in dogs: 229 cases (1994-2000). J Am Vet Med Assoc 2004;225:1231-1236.
- 4. Levine JM, Levine GJ, Kerwin SC, et al. Association between various physical factors and acute thoracolumbar intervertebral disk extrusion or protrusion in Dachshunds. J Am Vet Med Assoc 2006;229:370-375.
- 5. Gangi A, Basile A, Buy X, et al. Radiofrequency and laser ablation of spinal lesions. Semin Ultrasound CT MRI 2005; 26:89-97.
- 6. Choy DS, Altman P. Fall of intradiscal pressure with laser ablation. In Laser Discectomy (Sherk HH ed; Hanley & Belfus, PA), pp. 23-29. 1993.
- 7. Prodoehl JA, Lane GJ, Black J, et al. The effect of lasers on intervertebral disk pressure. In Laser Discectomy (Sherk HH ed; Hanley & Belfus, PA). pp 17-21. 1993.
- 8. Choy DS, Hellinger J, Hellinger S, et al. 23rd anniversary of percutaneous laser disc decompression (PLDD). Photomed Laser Surg 2009; 27:535-538.
- 9. Choy DS, Ascher PW, Ranu HS, et al. Percutaneous laser disc decompression: a new therapeutic modality. Spine 1992; 17:949-956.
- 10. Lee SH, Ahn Y, Choi WC, et al. Immediate pain improvement is a useful predictor of long-term favorable outcome after percutaneous laser disc decompression for cervical disc herniation. Photomed Laser Surg 2006;24:508-513
- 11. Ichimura Y. Percutaneous laser disk decompression for the cervical disk herniation: experimental studies and early clinical results. Jpn J Laser Surg Med. 18: 11-20. 1997.
- 12. Bernd L. Schiltenwolf M. Mau H. et al. No indications for percutaneous lumbar discectomy? Int Orthop 1997;21:164-168.
- 13. Gastambide D, Peyrou P, Lee SH. Percutaneous cervical discectomy. In: Bentley G, Bohler N, Dorfmann H, et al, eds, Surgical techniques in orthopaedics and traumatology. Paris: Elsevier, 2003; 55-095-A-10.
- 14. Ahn Y, Lee SH, Shin SW. Percutaneous endoscopic cervical discectomy: clinical outcome and radiographic changes. PHotomed Laser Surg 2005;23:362-368.
- 15. Dugat DR, Bartels KE, Payton ME. Recurrence of disk herniation following percutaneous laser disk ablation in dogs with a history of thoracolumbar intervertebral disk herniation: 303 cases (1994-2011). J Am Vet Med Assoc 2016;249(12):1393-1400.
- 16. Irizaryy IN, Dugat DR, Sippel KM, Payton ME. Evaluation of the intervertebral disk, vertebral body, and spinal cord for changes secondary to percutaneous laser disk ablation. Vet Surg 2021;1-12. https://doi.org/10.1111/vsu.13684

Questions?

